Femtosecond laser interference patterning for highly accurate material structuring

Irene Solana^{1,*}, Fernando Chacon-Sanchez¹, Mario Garcia-Lechuga¹, and Jan Siegel^{1,*} ¹ Laser Processing Group, Instituto de Óptica Daza de Valdés (IO), CSIC, Serrano 121, 28006 Madrid, Spain *Corresponding author email: isolana@io.cfmac.csic.es

The use of fast and ultrafast laser pulses is nowadays a well-established technique for microand nano-structuring of materials. Direct laser interference patterning (DLIP) with ps and ns pulses has evolved into a promising technique for material micro-structuring thanks to the precise and controlled energy deposition achieved through the interference of two or more coherent laser beams, which allows to fabricate a wide variety of structures in a broad range of materials [1].

When using ultrashort laser pulses, one of the major issues of this technique is the need of a nearly perfect temporal and spatial overlap between the interfering beams. To achieve this, we made use of an imaging set-up by combining commercial or ad-hoc laser-fabricated diffractive optical elements (DOE) with a demagnifying optical system. High-contrast, well-defined excitation profiles with a Gaussian envelope and periods between 5 μ m and 650 nm (Fig. 1a) can be achieved employing a commercial Ti:Sa amplified laser (800 nm, 120 fs, 1 mJ) by slightly changing the irradiation configuration. We employed this setup to obtain amorphous or ablative nanostructures in crystalline silicon (Fig 1b-c). The topography of the amorphized regions of the sample shows a strong dependence on the imprinted fringe width (Fig 1d-e). Moreover, we demonstrate the versatility and scalability of this technique by imprinting micro-dots of 1 μ m-600 nm diameter (Fig. 1f) and large area (5 mm x 5 mm) nanogratings (Fig 1g).

The results obtained allow a detailed investigation of the mechanisms responsible for the surface deformation, including melting, Marangoni convection, capillary waves, and resolidification [2]. Furthermore, the technique's exceptional upscaling capacity renders it highly appropriate for industrial applications.

Fig 1. (a) 1.25 μ m periodic laser intensity distribution at the sample plane. Inset shows the zoomed image of the selected area. (b-c) Optical microscopy images of single shot imprinted patterns in c-Si with 1.25 μ m (b) and 2.52 μ m periodicity. (d-e) AFM map of the outlined areas in (b-c). (f) Optical microscopy image of a dot-like pattern. (g) Macroscopic image of a large-area grating with 1.25 μ m period, illuminated by white light.

Acknowledgements: This work has been partly funded by the national research grant ULS_PSB (PID2020-112770RB-C21) from the Spanish Research Agency (AEI, Ministry of Research and Innovation) and the European Regional Development Fund (ERDF) as well as by research grants HyperSolar (TED2021-130894B-C22) and ASSESS (TED2021-129666B-C22) funded by NextGenerationEU.

References: [1] L. Mulko, M. Soldera, A.F. Lasagni, Nanophotonics. 11 (2022); [2] M. Alvarez-Alegria, C. Ruiz de Galarreta, and J. Siegel, Laser & Photonics Rev. 17, 2300145 (2023)