Comparative study of pulsed laser induced synthesis and precipitation of nanostructured ternary Co-Fe-S based coat and nanoparticles

Lukáš Vála^{1,*}, Tomáš Křenek¹, Rostislav Medlín ², Petr Mikysek³, Bastian Rödig⁴, Veronika Vavruňková² and Martin Koštejn²

¹ University of West Bohemia, Department of Materials and Engineering Metallurgy, Univerzitní 8, 30614 Pilsen, Czech Republic

² University of West Bohemia, New Technologies - Research Centre, 30614 Plzeň, Czech Republic

³ Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Praha 6 - Lysolaje, Czech Republic

⁴ Universität Regensburg; Institut f. Physikalische, Theoretische Chemie, Universitätsstraße 31; 93053 Regensburg, Germany

*Corresponding author email: valal@fst.zcu.cz

Abstract:

Highly polymorphic iron and cobalt sulfides are attractive materials due to their unique electronic, optical, magnetic, mechanical and catalytic properties. Bimetallic Fe-Co sulfides are desirable materials due to their superior catalytic properties compared to their monometallic counterparts. A methods of pulsed laser deposition of equimolar FeS2+CoS2 target onto Ta substrate and the route of precipitation from Na₂S.6H₂O, CoCl₂.6H₂O, and FeCl₂.4H₂O in a sodium metasilicate environment are presented. Thermodynamically non-equilibrium (laser ablation) and equilibrium (precipitation) processes provide different approaches to the preparation of bimetallic sulfides. The resulting materials were analysed by scanning and transmission electron microscopy, EDS, X-ray and electron diffraction and Raman spectroscopy. These complementary analyses revealed that the film on Ta consists of a bimetallic sulphide of cobaltpentlandite (FeCo₈S₈) and a smythite phase (Fe₃S₄). In contrast to the laser ablation process, the precipitation method leads to the formation of iron sulphide nanoparticles coated by a SiO₂ layer, whereas iron and cobalt sulphides are completely converted to oxides, e.g. wüestite FeO, upon removal of the stabilising SiO₂ coating by HF.