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In recent decades, ultrafast laser ablation has been extensively studied. Numerous simulations 
exist today that primarily provide a qualitative understanding of laser ablation with single 
pulses, while the precise quantitative prediction of final state and time-resolved observables 
remains challenging. Moreover, most experimental approaches to study laser ablation are 
performed with multiple pulses, making it difficult to experimentally validate single-pulse 
simulations. 
Final state observables that may be predicted by simulations include ablation threshold, 
efficiency, and morphology [1,2]. Pump-probe techniques can measure time-resolved 
observables with a femtosecond temporal resolution up to the final state within several 
hundreds of µs [3]. When pressure waves become visible in pump-probe microscopy, such as 
during laser ablation in liquids, also pressure amplitudes can be measured [4,5]. These 
observables can be used to test theoretical models and gain insight how pulse duration, 
separation, and fluence affect the efficiency of ablation and how photo-mechanical and photo-
thermal mechanisms contribute to the process. 
Here, we present new experimental validation of models for laser ablation in air and liquid 
[1] as well as for laser fragmentation of microparticles. 

 
As an example, we are able to highlight the strong photo-mechanical nature of laser 
fragmentation of iridium oxide microparticles immersed in water [5] by pump-probe 
microscopy, from which we can measure the pressure and energetics of the shockwave in and 
outside the particle. 
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